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LAUNCHER DYNAMICS STUDY

Part M) Rimews]
(A Two Point Mass Moving on a Flexible Beam)

ABSTRACT

This report contains an approximate analysis of the motion of a flexible
launcher rail which is supported by a flexible understructure and is loaded
by a missile with two point contact which moves across the rail under the action
of a prescribed thrust force. The launcher system is represented by a uniform
flexible beam which is supported by linear springs and the missile is constrained
to remain in contact with the beam. A pair of coupled integral equations are
obtained which define the motion of the missile and a numerical technique of
integration is developed for their solution. Finally some numerical results are
presented to show the effects of some of the parameters on the motion of the missile

and the rail.
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List of Symbols
Thrust force on the missile
Weight of the missile
Mass of the missile
Angle of elevation of the rail
Position coordinate of missile on the rail
Understructure spring rates
Locations of springs with respect to rear of rail
Total length of the rail
Length between shoes of the missile
Length from rear shoe to center of gravity of the missile
Contact forces between the missile and the rail
Flexural rigidity of the rail
Mass per unit length of rail
Principal transverse moment of inertia of the missile
Length of guidance for two point contact

Total length of guidance

Other symbols are defined in the text when introduced.



CHAPTER |

Development of Model

A typical straight rail missile launcher might appear as sketched in

Fig. 1. We replace this with the model shown schematically in Fig. 2. In

© A\

Y r r _r LA

Figure 1

the undeformed state the beam is straight, uniform, and at an elevation angle GE

The x axis is taken along the undeformed axis of the beam and the y axis is




generally downward. The beam is supported at two points by linear springs and
suitable constraints act to prevent axial motion of the beam.

We assume that the missile is a rigid mass which is forced to move along
the beam under the action of the prescribed force R (t). The motion of the mass
along the beam is measured by the coordinate § (t) as indicated in Fig. 2.
During the motion, two points of the missile are constrained to maintain contact
with the rail. At some later time TP , with & (TP )= d2 , the rear shoe also

leaves the rail and the missile is in flight. (It is possible for T, and T, to be

P Q

equal). We refer to 'I‘P as the tipoff time and assume that all motion occurs in

the xy-plane and that the entire system is initially at rest.



CHAPTER 2

Analytical Development of the General Problem

Consider the free body diagram shown in Fig. 3.

Yy

Referring to Fig. 4, let § be the rotation of the missile and y the

Figure 3

displacement of its center of mass. The equations of motion of the mass are

11
my

-P-Q+ mgcosGE

]

L,P-(L-L)Q



If we let Yp and yQ be the transverse displacements of the points of contact

then for small displacements and rotations of the missile

y;_rl_ YQ+ "_L_l- yP

and therefore

P=m(g h-Js')’P+JIVQ) (1)

Q= m(gd+] ¥p-J,¥,) (2
where

L, L-L L, (L-L))

T Tt hLpT T

Jp=— +(1-["—)2 13='—njzz +(£;_-L—1-)2 F-gcos O

In oxder to obtain a good approximation of § (t) we integrate the equation



mg = R ; £ -0, JURNR

where R is assumed to be a known function.

For the beam of Fig. 3, the equation of motion is

4 2
g1 2 xag:,g + pA B_Zil‘?tl = P§(E, %)+ Q6(E+L,x) 3

where & is the Dirac Delta or Unit Impulse function defined in the usual

manner, i.e.

0, x; <x2<E
)

fé(é,x) dx={ 1, X, < £ < X,
X

0.v§-<x1<x2

N

Since the system is initially at rest, the rail'sinitial velocity Ve (x, 0) is zero
and its initial displacement y (x,0) is due to the static loads produced by the
mass m.,

Assume that the solution of Eq. (3) may be written in the form

y(x9 =2Xn(xmn(t) P 08t Ty (9
n=

where xn (x) is the nth normal mode for the spring supported beam of Fig. 3,
and each q () may be regarded as a generalized coordinate. The set of functions

é(n (x)} are the eigenfunctions of the equation

4

d°X (x)
n .4 i 4 pA 2
— A, X (=0, MEET Y (5

n=123,...



subject to the appropriate boundar y conditions for the beam. (The detailed

h

solution of this equation is given in Appendix A). w_ is the nt natural frequency

n
for the beam. The set of functions (X (x)} also have the property

C
0fxm(x) X_(x) dx = {?: ’;‘n*: (6)

Having determined the functions xn (x) we can expand the Dirac

"

functions in the following series

[~
a(g.x>=2xn<e.)xn(x> %
n= 0
BE+Lx)= ) X (6+ L)X, (x) &
n=1

Using Eqs. (4, (7), and (8), Eq. (3) can be written

[+)
mle‘r’l aQ + e AanHn= P 2xn(g) X (%) +Q 2xn(g +L)X_ (%)
= n= n= n=

and with the use of Eq. (5) this expression becomes

Zanwznqn] xn<x>=2[£ X, 0+ & %€+ D] X,
n= n=

¢
Upon comparing coefficients of the functions (X (x)» , we obtain
{"n

Iinﬂ,znqn - p—‘; X_© + ‘% X €+L) ., n=123...
o<t T,

9

Since
y (x,0) - 2 X, (0 q, (0)
n=

y, (x.0) = X, (%) qn ©:=0
ns=



it follows that the solutions of Eq. (9) are subject to the conditions
c
q, (0) = f X, (x) y(x,0) dx (10)
0
4,(0 =0 (1

(An expression for q, (0) is derived in Appendix A). Thus the solution of

Eq. (9) becomes

t
q, (t) = q, (0) cos w.t+ p—A-t’TL[{P(T) xn [§ (til +Q (1) Xn [& (V) + I]} sin W, (t-7) dr
0

n-1,23... (12)

Upon setting x = € (t) in Eq. (4), we obtain the deflection of the point
of contact of the rear shoe:

yp(® =y (€. - i x_ [t o, (13

n=1

Similarly for x = € (t) + L, we find

q W=yE+LY- zxn [t®+1) a0 (149
n=

Then combining Eqs. (1), (2), and (14) and substituting this result into Eqs. (13)
and (14) we obtain the pair of coupled integro-differential equations in the

shoe deflections and their accelerations, 1i.e.
t

yp (0 = F (t) +_/-[l<1 (6D + K, (61 ¥p (D + Ky (6,7 'y'Q (r)] dr

0 0t T, 19
. Q
yQ (=G(v ;‘/'[K4(t,r) + Ks (¢, 7 'ip (1) + l(6 (t.7) 'y'Q (1')] dr
(16)

0<t<TQ



where

F (9 = Exn [g (Q’j q, (O cos w_t
G(Y) = zxn [g(t)+L] q, (0) cos w_t
- [g (ti] sinw_ (t-7)

- X
K, (t,7) = %} z n o n {h X, [g ('r)] +dx [g(-r) + 1;]}

yon - 2 Z x [t (t)]w:inwn(t"f) {11 x [Em+1) -13x [&(rﬂ}

Ky (1) - pn;‘ Z [ (t)] sin w_ (t-1) {]1 X [&('r)] [g (1')+L]}
Ky(tm) = DK z SR qsm"‘ () {hx [g(r)] +dX [&(1’)+LJ}

n=

" - ::'A Z Xn [E (v +:;| sin w_ (t-7) {11 X [&('r) . L] IX, [g("'il}
o

n

kg6 - :‘A z X, [g (v +:;| sin v (t-7) {Jl X [g(-r)] -1 X, [ﬁ(-r) + I.]}
n=

n

Note that the K, (t, 7) are non-symmetric kernels with the property Ki(tt) =0

In order to put Eqs. (15) and (16) in a more tractable form, let

up (9= ¥ (1)
ug (9= (9

Then since the missile is initially at rest,
yp (0) =Jd(t-f)up(r)d‘r+yp(0) (21)

t
yQ(t)=f(t-f)uQ(r)dr+yQ(0) (22)
0



9.

in which p (0) and yQ (0) are the initial displacements of the shoes and are

computed from
yp (O = 2qnw> X, €,)
n=

Vo (O = an(o) X €,+L)
n=

Therefore Eqs. (15) and (16) can be written in the form

t
Vp (0) = F (t)OJiKl t,n+ E(z (r,7) - (t-r)] up (r + K3 (t, D uQ ('r)} dr (23

yQ 0 =G (t)otl({l(4 (¢, 7) + K5 (t,7) up (n + [K6 (t,7) - (t-‘r)] uQ ('r)} dr (29

These equations are to be solved for up (Y and uQ (). (In the next section we
will present a numerical technique for obtaining appropriate solutions). The
motion of the missile is then computed from E s. (21) and (22) and the motion
of the beam can be obtained from Eqs. (4) after P and Q are determined from
Eqs. (1) and (2) and Q, (t) is found from Eq. (12).

Eqs. (23) and (24) are applicable when both shoes of the missile are in
contact with the rail. When the front shoe loses contact with the rail, Q becomes

and remains zero. For this case we set

0
y(xt) = Z X, (0 @ () To<t<Tp (29
n=
obtaining
o ten s 21 X6 (26)

n=123,...



10.

subject to the continuity conditions q"'n (TQ )= q, (TQ ) and &.n (TQ) = an (TQ »

i. e. the displacements and velocities of the beam are continuous. Therefore,

q‘n(t)=qn(TQ)cos wn(t Q)+—— q"' (Q) sinun(t-TQ)

+ ',TlA‘JJtP' M X [g(rﬂ sinw_(t-7)d7 (27)
T Lz
TR<!<Tp
where

is found by setting Q = 0 in Eq. (2) , solving for il'Q ,» and then substituting
this result into Eq. (1).

Differentiating Eq. (13) twice we obtain

o (0 = i[iin © 9, (0 +2X_(€) a, 0 +X_®) 3 (]
n=1
0<t< T
and similarly, from Eq. (25) after setting x = § (¢t)

¥ep () = g[i'n € a*, 0+ 2% @ a* O +X, O T, (0]

Tos ' <Tp

Ifweset t = TQ in each of these equations and subtract, we find



11,
'Z xn[g (TQ)] {Jl Xy [ﬁ (TQ)] =12 X, [ﬁ(TQ) + IJ}
TA )=

Vp (TR =¥p (T + QT 5
pAJ,+m(, +hd z {E{n [g('rQ)]}
n=

where use has been made of Eqs. (1), (2), (9), (26), and (28) to simplify the

(29)

result.
In Eq. (25) we now substitute £ (t) for x and proceed as before to obtain

the displacement of the rear shoe,

t
y*o (9 = F* (t)+f[!<*1(t,r)] [5-Vp@] ar (30)
T
P < t<Tp
where
. 4 (T,)
F*(9) = _B_wn sinw, (- To) +4q (Tg) <08 @, (t - Tt %q [g (t:).l
= o0
Jy+hd x, [g ] x [t @]
K‘l(t,'r)=m PAIZ Z n “’nn sinwn(t-‘r)
n=

(K* 1 (t,7) is also a non-symmetric kernel with the property K* 1 (t,t)=0 ).

If we now set
O..
utp () = y p(®

then upon integrating,
t
Yp = (- T [Jp (T +3 (- T E] + 3, (T - f (t-1) [§-utp (7] ar
T
Therefore Eq. (30) can be written in the form Q
t
(t- T [Fp (T +3(t- T E] +p (T - F* @y + [k, &+ -n) (3w pn)] ar

T, € KT, (31)



12,

For the condition of only the rear shoe in contact with the rail we obtain
a single integral equation which we must solve for g - u*P (t). (In the next
section we will present a numberical technique for obtaining appropriate solutions).
The motion of the system is now computed as before except that the determination

of uQ is replaced by the condition Q =0,



13.
CHAPTER 3

Numerical Solution of Equations

An approximate solution of the equations of motion can be obtained in
the following manner. For definiteness, we suppose the thrust curve is as shown

in Fig. 5.
R(v)

Rmax 77

- ———

|

|

I

|
L
(o] TQ P

Figure 5
If t is the thrust buildup time and RM AX is the value of R (t) at t, then

R
ogtgt, i €= n}‘f?:( %—+§

t, &t b8 gttt )y ==t T 4
and
2 1
T = Y ; /m 48 %
QT[T Ky T
2 1
.1.=to+ md2'§o_to
P 7 7 R, 12

MAX

Now we divide the interval 0 € t< TQ into M equal intervals of time
T,
At = -&- in length. Observing that uP(O) = "Q ) =0, Kt (tlt) = 0, and applying



14.
the trapezoidal rule of integration, we obtain the following approximations for

Eqs. (15) and (16).

yP(O) - F(N At)
At
N-2
+ rKl(NAt, jat) + E(Z(NAt, jat) -(N-j)At] up(j At)
=1

N -

Kl(NAt.O) 2€<NEM

+Kz(Nat, jan o) G At)}

+K, [N At, (N-1) AE] + {Kz [N At, (N-1) Aﬂ- At} uPBN-n At]

+ Ky [N At, (N-1) At] i [(N-l) At]

(32

1@ - GINat)

i
At 2

K4(NAt, 0) 2gNLM
N-2
+Z{<4(Nm, jAt)+K5(NAt, jAt)uP(jAt)

+ [KgMNat jac) - (N - p af] uQ(jAt)}

+k, [Nat (-1 at] + kg [Nat () at] up [(N-) at] (33)

+ {Ko [N at, (N-1) at] - acp ug [(N-l) At]

We begin the numerical process with N = 2 and then use successive substitutions
to carry out the numerical integration to N = M. The advantage of using this
form for the equations is that they are recursive in nature and therefore do not
involve the inversion of a matrix for their solution. The bulk of the computations

will be in computing the kernels l(‘ (t, ) at the various sub-intervals of time.



15.

The sums on j create no large amount of computation because the kernels can
be rewritten so that the corresponding values at j+ 1 are obtained from those
at j by adding a term.
Because Ki (t, t) = 0, we use Eqs. (32) and (33) to compute up (1) and
uQ (t) only up to TQ - At. In order to compute the values at TQ a second degree

polynomial is fitted to the preceeding three values resulting in the formulae

up (Tg) 2 up E(M-S) At] +3 {uP [(M-l) At] -y [(M-z) At]}
ug (TQ) * %y [(M-3) At] + S{uQ [(M-l) A€| - Uy [(M-z) A t]}

The main factor influencing the choice of the number of subdivisions

M= Z(%' is the factor sin W, (t-7)=sin w (N-j) At in each kernel. In

numerical computations we have to truncate the series expressions at some
value n = p. Then the factor sin wp (t - 7) could range over many complete

cycles in the interval 0 g t TQ . “p (n-j) At changes by the amount “p Ot
with each increase in j and prudence demands that, at the very least, wp At < ; .

(In the computations made, the worst case had five points per cycle in the third
mode , i.e. p = 3 was used).

For Eq. 1(‘312 ¥e divide the interval TQ< t& Tp into M* equal intervals
of time At* = LM‘Q_ in length. Observing that l("'1 (t,t) =0, the

trapezoidal rule of integration applied to Eq. (31) yields



16.

N* At [)'!P(TQ)+%N‘At‘§]+yP(TQ) -F*(Ty+ N At)

ALY a
2 N M
- 3 [k, (Tq +N* &r%, To) +N° a*] [2-wp (To )] (34)
N*-2
+ z [x*l (Tq +N* A, To +§ At) + (N*-) At“‘] [E-wP (Tq +! At"')]
i=1

+ {K"l [TQ +N* At T, +(N*-1) & tﬂ + At-}{i -t [TQ +(N*-1) Ati}

where we have set t = TQ + N* A t*. We begin the numerical process with

N* = 2 and carry out the same resubstitution process that was used in Eqs, (32)
and (33). Since Eq. (34) can be used only up to TP - At*, we again compute

the value at TP from a second degree polynomial approximation. The time
interval At* is chosen comparable to At by taking M* as the next integer larger
than (Tp, - TQ)/M Tq -

Having deterinined the values of up, ug and g - u*p at each of the
sub-interval points, we are in a position to determine values for the following
parameters. Each of the indicated integrations may be carried out using
Simpson's rule for example, and only p normal modes are considered in the
series expansion.

For © , the pitch angle of the missile

t
'6(0)+{f(t--r) [uQ(r)-uP(r)] dr, o‘:g'rQ
B(y)= 0

° d ' .
(t- TQ) G'(TQ) +9 (TQ)+I;[:-rf(t-r) [g- u l,('r)] dr, TQ‘ tg T,
Q
For © , the pitch velocity of the missile



17.

1
, If[uQ(f)-uP('r)] dr ,0<t<TQ

. d _ .
‘G(TQ)-'-]_Z—E_ [g-uP(‘r)] dr ’ TQ‘ t<TP
Q

For y, the center of gravity displacement of the missile
t

§(0)+f(t-1-) [hup(‘r)+duQ(‘r)] dr, 0Lt T,

0 J hd

-};(t) = L - 1 2- .
(t-TQ) y (TQ) +y (TQ) + -2-(t-TQ) g - —I—Z—T- (t-7) [g - uty (1')] dr,

TS t<Tp

[ ]
For y , the center of gravity transverse velocity of the missile

t
. [hup('r)+duQ('r)]d'r , OstsTQ
y (t) = 0 Jl +hd t
y(TQ)+(t-TQ)g- T f[g-u*l,(-r)] df,TQ< tg Tp
T,
Q
For Y1ip * the tip displacement of the rail
p
Xn(c)qn(t) ’ 0<t<TQ
Yrrp (0 = { @
TiP ZXn CLC , T t< Ty
For ;'TIP , the tip transverse velocity of the rail
zxn (99, () , ISt Ty
Yorqp (O = .
TP ii‘n (@) q*, (V) » TqetLTp
n=

For Y'TIP , the tip angular displacement of the rail



X'n(c)qn(t) , 0<t<TQ
y' (V) = 3 *
TP Xn@n0 |, h<ieT,

n=
For ;"TIP » the tip angular velocity of the beam

X040 . o<tgT,
n:

ix-n (c) é*n v , TQ <tg TP

n=1

V'qrp 0 =

18,
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CHAPTER 4

Numerical Results

Table 1 gives the nominal values of the parameters specifying a

particular system.

Table 1
Parameter Description Value

k, Rear spring support oo
ky F ront spring support 9,230 1b/in
a x coordinate of k, 46 in
b x coordinate of k, 160 in
c Total rail length 328 in
EI Flexural rigidity of rail 54 x 10° 1b-in?
oA Mass per unit length of rail 0.018325 1b-sec/in-in
eE Angle of elevation of rail 0. 8 rad
L Length between shoes of missile 144 in
L, Length from rear shoe to center of

gravity of the missile 100 in
w weight of missile 4150 b
] Principal transverse moment of

inertia of missile 41, 200 lb-secztnz/ in
go x coordinate of rear shoe at t =0 4 in
Ryiax Maximum thrust force on missile 124, 686. 6 1b
d 1 Length of guidance for two shoe contact 180 in
d2 Total length of guidance 180 in
t Thrust build-up time 0. 100 sec



The following variations of the nominal values were also considered

Table 2

System
Soft beam

Stiff beam
Soft spring
Stiff spring

Short overhang

Short tipoff
Long tipoff
Light beam

Heavy beam

Parameters Changed

El= 5 (Bl)__

El= 5 (E)

k2 =é (kz) nom

ky = 10(k3) 1om

b= (C)nom

k2 : (b—;q_)znom (kz) nom
dy = 1.01(d,) o

dy =(dpDrom + WMyom
1
pA =5 (pA) om

pA= 2(pA)

For the nominal system results were computed using one, two and

three modes. The results for § and ©

are shown in Figs 6 and 7. For the

parameters involved, two modes apparently furnish values as accurate as three.

Figs 8 through 1S present graphically the results obtained for the systems

given in Tables 1 and 2, Three modes were used in all of the computations,

The effect of long and short tipoff are given in Table 3.
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Table 3

Nominal Short Tipoff (TP = 222.7)

3. 300
24,960
0.061
0.944
0.074
0. 342
3. 340
4. 650

21,

Long Tipoff (TP = 283, 1)
10. 320
199. 210
0. 142
1,742
. 057
-0.513
2. 670

2.770

The natural frequencies of the unloaded beams in the above systems are

also of interest.

System

Nominal
Soft beam
Stiff beam
Soft spring
Stiff spring

Short overhang

Short tipoff
Long tipoff
Light beam

Heavy beam

Table 4

These are presented for the first three modes in Table 4.

Natural Frequency, cycles/sec

f)
4.6
4.6
4.7
3.3

13.0
4.7
4.6
4.6
6.6

3.3

)
52.6
37.7
73.8
52. 2
58.9
52.1
52.6
52.6
74.3
37.2

f3

156. 3
110.5
221.0
156. 3
156. 3
156. 3
156. 3
156. 3
221.0

110, 5
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APPENDIX A

Solution for Eq. (5)

Fig. A.1 shows the beam of Fig. 3 in an unloaded state.

Pe—— ———
k) k,
—— 3
- b
- ¢ -
y Figure A,1l
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The n':h normal mode Xn (x) for this spring supported beam are the

eigenfunctions of the equation

d4x

n

4

—F -, X, =0

dx

whose general solution is

(A. 1)

xn (%) = A'n sin A, X+ B'n COs A, X + C'n sinh An X + D'n cosh A, X (A. 2)

Since both ends of the beam are free, we must have

X"n () - X"'n ) = Xn" (c) = X"'n (c)=0

At the supports, i.e. atx=a and x =D, xn (), x'n (x) , and x"n (%)

must be continuous and

(A. 3)
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Elxnvn (a-) - EIX"'n(a+) _kl xn(a) =0 (A- 4)
"e - - "e + - =
EIX n(b ) E:IXn (b)) kzxn(b) 0 (A. 5)
In view of Eqs. (A. 4) and (A. 5) we make the following definitions
0gxga: xn ) = ¢n (%) = An sin An (a-x) + Bn cos An (a-x) + Cn sinh An (a-x)
+ Dn cosh A, (a-x) (A. 6)
agxgb: Xn (x) =h (x) = En sin A, X+ Fn cos An X+ Gn sinh An X
+ Hn cosh A, X (A.7)
bgxgc: Xn (x) = Ny (x) = In sin An (x-b) + Jn cos An (x-b) + Kn sinh An (x-b)

+L, cosh A (x-b) (A. 8)

Satisfying the conditions on xn (x) at the supports k1 and k2 results in

An=-Encosxna+FnsinAna+a%pn(a)
Bn=EnsinAna+Fn<:osAna

Cn= -GncoshJ\na-Hu sinh)\na-aAn un(a)
Dn=GnslnhAna+anoshAna

In =Encosknb-Fnsmhnb-ﬁAnun(b) (A.9)
J. =E_sinA b+F cosA b

n n n n n

Kn=GncoshAnb+HnsinhAnb-ﬁAn “n(b)

Ln = Gn sinh xn b+ Hn cosh >‘n b
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where
i oeiw ATy
n
Using Eqs. (A.9) we now have
Oaxga: X (=6 ()=p XM+aqy ula [sm A, (a-%) - sinh A_ (a-xﬂ . {A.10)

agXxgb: xn (x) = p.n(x) = En sinA x+ F, cos An x + Gn sinh A x+ Hn cosh Ay X (A.11)

bgxgc: X (X =n (X=p (N-84a, by (B |Bin A, (x-D) + ginhA (x-b)] (A.12)

From the end conditions of Eq. (A. 3) we then have

EnaAnsinAna(sinAna+sinhxna)
+Fu [l+aAncosAna(sinAna+sinh)\na)]
+GnaAnslnhAna(sin)\na+sinh7xna)

+l-ln aAncoshAna(sinAna+sinhAna)-1] =0

En aAnslnAna(cosAna+coshAna)-1]
+FnaAncos Ana(cos Ana+cosh7\na)
+Gu [1+aAnsinhAna(cosAna+coshxna):|

+H aA coshA a(cosAya+coshi a) =0
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En {- sin "n c+p An sin An b |sin An (c-b) - sinh An (c-b)]}

+ Fn {-cos A,c+B A, cos A b |sin Ay (c-b) - sinh A (c-b)]}
+Grl sinh An c+8 An sinh >‘n b |sin An (c-b) - sinh An (c-b)]}

+ Hn {cosh An c+B8 An cosh >‘n b |sin An (c-b) - sinh J\n (c-b)]} =0

En {- cos An c+p a, sin An b |cos }‘n (c-b) - cosh An (c-bil}
+ Fn {sin An c+p8 An cos A b |cos A (c-b) - cosh An (c-bil}
+ Gn {cosh An c+p An sinh Ay b | cos Ay (c-b) - cosh A, (c-b)]}

+ Hn {sinh An c+p8 An cosh An b |cos An (c-b) - cosh An (c-tﬂ} =0

These last four equations are a homogeneous set and for non-zero values of
E. Fn’ Gn, and Hn the determinant of the coefficients must be zero, The
roots A, of this determinant are the eigenvalues for the problem .

We solve the homaogeneous equations in the form

En=enzn
Fn=fnzn
Cp =8 2%,
Hn=hnzn

where at least one of the ey fn’ gn , and hn is one. Then we choose the value

of z, such that
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C * "
- 1 2 3 "e - n n x " 2
J;tn(X)Xn(X)dx- 3 | XX+ — X X" - —— + (X))
0 A, AL Ay

2x R
]
n

For this problem this means that z is chosen such that

2
1 {6a a, @] -4aan @n @

+68 & [nn(b)]2 -4pb w0 wd +en <cﬂz} -1

To prove that

c
0j‘xm(x) Xn(x)dx=0 for m#n

we write
IV 4 _
XnXa M Xan-O
v 4 _
xnxm Am X n'0

Subtracting and integrating over the length of the beam results in

ot -x“m)j(xm(x) X, (%) dx:j(‘xmxlz -x XV ydax
0

0
Integrating the cright hand side by parts yields b
a
4 4
AT -A X (X dx= o ¢ -¢ "L+ we o ot 1
( n ﬂo)fm() n(x) [m n ¢m¢n [“m"n “m“n]a

c a

* P Ty B Yl
- AL Rl - 1 A\ b e - . " C
[f‘n“m “n“m]a' ["nnm Mo m),
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And upon applying the conditions on ¢n (x), b (x) , and Ny (x) we have
c
(A4n _ 7\4m) Ofxm(x) Xn(x)dx =0

Since in general A4n - 7«4 m 7 0 then

c
0-/'Xn(x)xm(x)dx=0 for mi#n

Thus proving the orthogonality of the beam functions {xn (x& .

For Eq. (10) we write

a0 - fxl‘{l () y (x,0) d x
0

Integrating by parts results in
c
A @ - X 0y -X @y (0 X (WY (0 - X, (Y (% 0):]0

c
+fxn(x) Y (x,0)dx.

0

For a beam statically loaded with concentrated loads yIV (x,0) is zero and

for the beam of Fig. A.1 y(x,0), y' (x,0), and y" (x,0) must be continuous
and y"' (x,0) satisfies the same discontinuity conditions which xn (x) satisfies.
Therefore the final results for qQ, (0) can be shown to be

0, - 2E - [ax €,)+daX ¢ +L)] (A-19

pA W
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